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Summary: Using (c-C&l)zBCl/Et& the aldol reactions 
of the a-chiral alkoxymethyl ketones 5 and 6 with achiral 
aldehydes gives the 1,2-anti-2,4-anti adducts 7 and 8 in 
83-95 % yield with 195 % diastereoselectivity. This novel 
aldol reaction was applied to a concise and highly 
stereocontrolled synthesis of the C 2 d 3 2  subunit 9 of 
rapamycin (10). 

We have introduced the a-chiral ethyl ketones (8)- and 
(8)-1 (Scheme I) to serve as versatile dipropionate reagents 
for the construction of polyketide-derived natural products 
(macrolides, polyethers, etc.).’$ Using the derived boron- 
and tin(II)* enolates, their aldol addition reactions with 
aldehydes allow the expedient synthesis of complex 
polypropionate subunits? e.g., enabling selective access 
to all possible stereoisomers of the common stereopentad 
unit 2 from methacrolein.‘ This powerful methodology 
relies upon efficient regio- and stereocontrol during the 
enolization of ketone 1, together with high levels of ?r-face 
selectivityinthe aldehydeaddition step throughsubstrate- 
or, in some cases, reagent-control. For example, the boron- 
mediated anti aldol reaction, 1 - 3 - 4, proceeds with 
195% diastereoselectivity (ds) for all aldehydes examined 
to date.2b*3” 

To allow access to more highly oxygenated structures, 
an extension to the synthesis of contiguous polyols was of 
interest. By starting from the analogous a-chird alkoxym- 
ethyl ketones 5 and 6, we now report the aldol construction 
of the anti keto glycol derivatives 7 and 8 with high 
diastereoselectivity. This novel aldol reaction was applied 
to a short synthesis of the C24-C32 subunit 9 of rapamycin 
(10). 

The starting ketones 5 and 6 are readily available with 
297 % ee by adaptation of our existing synthesishtk of the 
ethyl ketone (R1-l from (R)-(-)-methyl 3-hydroxy-2- 
methylpropionate (10) via 11 and 12 (Scheme 11). Addition 
of the appropriate (benzyloxymethy1)- or (methoxyme- 
thylllithium reagent to  the Weinreb amides 12 
(POCH2SnnBw, “BuLi, THF, -78 + 0 OC) gave the ketones 

[aIm~ = -32.5O (c 0.16, CHCla), respectively. The enan- 
tiomeric ketones should be available in a similar fashion 
starting from (S)-lO.”*k The reaction conditions for 

5 (78%), [rUI2OD -17.1’ (c 0.16, CHCls), and 6 (BO%), 

(1) Paterson, I. Pure Appl. Chem. 1992,64, 1821. 
(2) Paterson, I.; Lister, M. A. Tetrahedron Lett. 1988, 29, 585. (b) 

Peterson, I.; Goodman, J. M, I&, M. TetrahedronLett. 1989,30,7121. 
(c) Patemon, 1.; Tillyer, R. D. Tetrahedron Lett. 1992, 33, 4233. 

(3) Oleandomycin: Paterson, I.; Lister, M. A.; Norcross, R. D. 
Tetrahedron Lett. 1992,33,1767. (b) Denticulatin A and B Patereon, 
I.; Perkins, M. V. Tetrahedron Lett. 1992, 33, 801. (c) Muamvatin: 
Patemon, I.; Perkine, M. V. J. Am. Chem. SOC. 1993, 115, 1608. (d) 
Swinholide A and misakinolide A: Paterson, 1.; Cumming, J. G. 
Tetrahedron Lett. 1992, 33, 2847. (e) Tirandamycin A Paterson, I.; 
Lister, M. A.; Ryan, G. R. Tetrahedron Lett. 1991,32,1749. 

(4) Paterson, 1.; C h o n ,  J. A. Tetrahedron Lett. 1992,33, 797. 
(6) Levin, J. I.; Twos, E.; Weinreb, S. M. Synth. Commun. 1982,12, 

989. (b) Nahm, S., Weinreb, S. M., Tetrahedron Lett. 1981,22, 3815. 
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E-selectives enolization of these ketones with dicyclohexyl 
boron chloride are based on that of Brown et a1.I and our 
protocolzb for the related process 1 - 3. Thus, enolization 
of 5 or 6 was performed8 in Et20 (-78 - 0 OC, 45 min) 
using (c-C&)zBCl (1.5 equiv) and E t N  (1.7 equiv), 
followed by cooling to -78 OC, and addition of the 
appropriate aldehyde. 

As shown in Scheme 11, this gave high yields (83-9595) 
of the aldol adducts 13-16 for a range of achiralaldehydes. 
In each case, HPLC and 400-MHz lH NMR analysis of 
the crude product mixture indicated the formation of a 
major aldol isomer with 195 ds,8 which was shown to be 
the 1,2-anti-2,4-anti adduct. The chiral aldehydes**e (8)- 
and (S)-17 gave the respective adducts 18 and 19 with 
80 % (mismatched) and 95% (matched) ds. In these double 
stereodifferentiation experiments,1° the high level of *-face 

(6) For a rationalization for thin enolization selectivity, see: Goodman, 
J. M.; Paterson, I. Tetrahedron Lett. 1992,33,7223. 

(7)Brown, H. C.; Dhtu, R. K.; Bakehi, R. K.; Pandiarajan, P. K.; 
Singaram,B. J. Am. Chem. SOC. 1989,111,3441. (b) Brown,H. C.;Dhar, 
R. K.; Ganemn, K.; Singaram, B. J. Org. Chem. 1992,57,499. (c) Brown, 
H. C.; Dhar, R. K.; Ganesan, K.; Singaram, B. J. Org. Chem. 1992,67, 
2716. 
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selectivity from the E-enolate partner overrides any 
Felkin-Anh-type influence" from the aldehyde stereo- 
center. The 1,2-anti relationship was suggested by the 
large vicinal coupling constant ( 4 , 2  = 5.7-8.7 Hz)2bJ2 
observed in all cases and established for 13 by DIBAL 
reduction to the syn 1,3-diol20 and 'H NMR analysis of 
the derived acetonide 21. Furthermore, the absolute 
configuration at the hydroxyl-bearing center was estab- 
lished as (R) by lH NMR analysis180f the derived (R)- and 
(S)-MTPA esters of 13. Taken together with the (R)- 
configuration in the starting ketone 7, this requires a 2,4- 

(8) The optimum reaction conditions required the use of 1.6 equiv of 
boron chloride. Changing the stoichiometry in the range 0.8-2.6 equiv 
only affected the yield and not the overdl diytetaaelectivity. Hence, 
wo believe that acyclic aldol transition states are not involved in this 
reaction. Ibpremntative o x ~ r h e n t a l  proaedpre: To a 
solution of dicydohexylboron chloride (1.6 equiv) and Et&J (1.7 equiv) 
in dry EtpO (3 mL/mmol of boron reagent) at -78 OC was added asolution 
ofthe ketone 6 or 6 in Et&. After 16 min, the reaction mi.kue was 
w d  to 0 "C for 46 min and then recooled to -78 OC. A wlution of 
the aldehyde (3-6 equiv for sim le aldehydm, 0.9-1.6 equiv for more 
precious aldehydes) in EtpO (1 & m o l )  was added. Mter 30 min, the 
reaction mixture wan kept at -20 OCfor 14 h (f") and then partitioned 
between pH 7 buffer and &O. The aqyeow layer wan extm.?ad with 
EhO, and the organic extra& were combmed and concentratad an uacuo. 
The residual oil was b l v e d  in MeOH (6 mL/mmol of ketone) and pH 
7 buffer (6 Wmmol), and aqueouu H& (30%, 3 mL/mmol) was added. 
After b e i i  stirred for 1 h, the mixture was then partitioned between pH 
7 buffer and CH&ln and worked up. The crude product was purified by 
flash chromatography and/or HPLC to give the major 1,2-anti-2,4-anti 
aldol adduct 7 or 8. The reaction diaetereonelectivity was generally 
determined by weighing the cbromatogmphically separated aldol adduds, 

eed with the h m e r  ratioa obtamed from analyt~cal HPLC and ZEa 1H NMRepectroecopyperformbdonthecrudereactionmixture. 
(9) (R)- and (8-17 were prepared from (R)- and (a-(+)-methyl 

3-hydroxy-2-methylpropionate (Aldrich), respectively. 
(10) F o r a ~ v i ~ o f d o u b l e s ~ ~ n t i a t i o n i n b o r o n a l d ~ r e a c t i o n s ,  

see: Kim, M.; Williamr, S. F.; Masamme, S. In Comprehensive Organic 
Synthesis, Trmt, B. M., Fleming, I.,Eda.; PergamonPreas: Oxford, 1991; 
Vol. 2, 239. 

(11) %or the origins of diaatereofacial selectivity in the aldol reactions 
of chiral a-methyl aldehydea, we: (a) R o d ,  W. R. J. Org. Chem. 1991, 
56,4161. (b) Gennari, C.; Vieth, S.; Comotti, A,; Vulpetti, A.; Goodman, 
J. M.; Patenon, I. Tetrahedron 1992,48,4439. 

(12) Heathcock, C. H. In Asymmetric Synthesis; Morrison J. D., Ed.; 
AcademicP" NewYork,lW,Vol.3,plll. (b)Evanr,D.A;Nelron, 
J. V.; Taber, T. R. In Topics in Stereochemistry: Wiley-Intencienca: 
New York ,198z; VoL 13, p 1. 

(13) Ohtani, I.; Kuuumi,T.; Kslhman, Y.; Kahawa, H. J. Am. Chem. 
Soc. 1991,113,4092. (b) Dale, J. A.; Mmher, H. 8. J. Am. Chem. SOC. 
lWI),#, 612. (c) Sullivan, G. R; Dale, J. A.; Monher, H. S. J. Org. Chem. 
i97a,s ,  2143. 
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anti relationship of the methyl- and oxygen-bearing 
stereocenters (also cf. 1 - 4 in Scheme I). 

The high level of stereodifferentiation operating in these 
anti aldol reactions14 is remarkable and can be traced to 
the relative steric and electronic properties of the three 
substituents-H, Me, and CHzOBn-at the adjacent 
stereocenter. For the enolates 22 and 23, we propose that 
the preferred chairlike transition structure TS-I is re- 
spon~ible8.~6for the high level of aldehyde s-face selectivity 
(sire > 201). This minimizes A(1,3) dlylic strain16 with 
the E-enol alkoxy group and has the methyl group pointing 
outwards and the benzyloxymethyl directed in toward the 
aldehyde. This apparent contrasteric preference for TS-I 
(si-face attack) over TS-11 (re-face attack) is considered 

(14) Nota that the corrqppnding Z-enol borinate derivative of the 
ethyl ketone 1 provides neghigble substrate-induced s t e ~ l e c t i v i t y  in 
syn aldol reactions (ref 2a). 

(16) For transition-state modeling of the anti aldol addition I )  -4, M)O' 

Vulpetti, A.; Bernardi, A.; Gennari, C.; Goodman, J. M.; Patareon, 
Tetrahedron 1993,49,686. 

(16) Hoffmann, R. W. Chem. Reu. 1989,89, 1841. 
(17) This b supported by the resulta for the corresponding anti aldol 

reaction of the ketone i, where a CHs group replaces the benzyl ether 
oxygen in 1. A dramatic eroeion of *-face selectivity with methacrolein 
is now observed - 7228 (sire or re:si) fori us 982 (si:re) for (A)-1 itself. 

P h 4  Ph-OJ.,,) 

0 0 
I (R) -  1 

(18) For contrasting etereoselectivities in the anti aldol reactiom of 
some other chiral ethyl ketones, see ref 16 and (a) Patereon, 1.; Hulme, 
A. N.; Wallace, D. J. TetrahedronLett. 1991,32,7601. (b) E v m ,  D. A.; 
Ng, H. P.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992,48, 2127. 

(19) Lone-pair repulsion hae been wed by R o d  to rat ionab the 
symmetric induction occurring in tartrate-mediated allylboration re- 
actiom. hush, W. R.; B d i ,  L. J.  Am. Chem. Soc. 1988,110,5979. 

(20) Hale, M. R.; Hoveyda, A. H. J. Org. Chem. 1992,57, 1643. (b) 
Meyer, S. D.; Miwa, T.; Nakatauka, M.; Schreiber, S. L. J.  Org. Chem. 
1992,67,5068. (c) Romo, D.; J o h n ,  D. D.; Plamondon, L.; Miwa, T.; 
Schreiber, S. L. J.  Org. Chem. 1992,67,6060. (d) Fbher, M. J.; Myem, 
C. D.; Joglar, J.; Chen, S.-H.; Daniehefsky, S. J. J. Org. Chem. 1991,56, 
6826. (e)Chen,S.-H.;Horvath,R.F.;Joglar,J.;Fieher,M. J.;Dauiohefsky, 
S. J. J.  Org. Chem. 1991,56,6834. (0 Sin, N.;Kallmerten, J. Tetrahedron 
Lett. imS, 34, 763. 

P. S.; Swindeb, N.; Finlay, J. A. Can. J.  Chem. 1978,56,2491. 

Schreiber, S. L. Angew. Chem., Znt. Ed. Engl. 1992,31,384. 

(21) Fmdlay, J. A.; &dice, L. Can. J.  Chem. 1980,58,579. (b) White, 

(22) (a) Schreiber, S. L. Science 1991, 251, 283. (b) Roeen, M. K.; 
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to have an electronic origin,lJSJ'J8 possibly with TS-I1 
destabilized by lone-pair repulsionlg between the oxygen 
atoms. 

Communications 
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re-face anad 

The macrolide antibiotic rapamycin (10 in Scheme 
has recently attracted considerable synthetic20 attention 
due to its challenging structure21 and potent immuno- 
suppressant activity.* We envisaged that the CxCm 
bond might be constructed with a high level of stereocontrol 
using a boron-mediated anti aldol reaction.B For the 
present study (Scheme 1111, our target was the CUx32 
subunit 9. The aldehyde 24 was prepared by straight- 
forward chemistryU via (S)-17.g Under our standard 
conditions,8 the aldol addition of the ketone 6 with 24 
proceeded smoothly, via the E-enol dicyclohexyl borinate 
25, to give a 94% yield of 9, [aIaoD = -5.1O (c 0.24, CHCls), 
with 97 % ds. The 1,2-anti-2,4-anti relative stereochem- 
istry was established as shown by selective reduction of 
9 (DIBAL, CH2C12, -78 OC; 97% de) to the corresponding 
syn 1,3-diol25. This was then converted into the acetonide 
26, [rUIaoD = -8.2' (c 0.1, CHCls), as well as the benzylidene 
acetal 27 (DDQ, CH&l+permitting a secure stereo- 
chemical assignment by lH NMR spectroscopy. 
In summary, we have achieved a short and highly 

diastereoeelective synthesis of the C U - C ~ ~  subunit 9 of 
rapamycin. The key step, forming the C2gCm bond, is 
based upon the anti-anti aldol reaction of the chiral ketone 

bond in the de-gradation 
of rapamycin, em: (a) Yohannes, D.; Ddhefsky, S .  J. Tetrahedron 
Lett. 1092, 99, 7469. (b) Luengo, J. I.; Konialian, A. L.; Holt, D. A. 
Tetrahedron Lett. 1998,34,991. 

(24) The enal24 (E2 = 966) WBB prepared by Wittig reaction of (8- 
17 with MeO&C(Me)-PP4, followed by DIBAL reduction and Dew- 
Martin oxidation. (a) Diez-Martin, D.; Koteeha, N. R.; Ley, s. V.; 
M~d~,J.C.Synlett1992,399.  (b)Nagaoka,H.;Kinhi,Y. Tetrahedron 
1981,97, 3873. 

(23) For retro-aldol cleavage of the C 
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6. This process should be useful for coupling with more 
complex aldehydes, available either by synthesis or from 
the controlled retro-aldol cleavageB of rapamycin. More 
generally, the aldol reactions of the readily available 
alkoxymethyl ketones 5 and 6 (and their enantiomeric 
forms) should prove to be useful in the synthesis of other 
highly oxygenated natural products of polyketide origin. 
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